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M A G N E T I C  FIELD E F F E C T S  ON 
M I X E D  C O N V E C T I O N  B E T W E E N  
R O T A T I N G  COAXIAL D I S K S  

M. F. Dimian a and A. H. Essawy b UDC 532.135 

This paper deals with a similarity analysis of axisvmmetric mixed convection between two horizontal 
infinite rotating coaxial disks in the presence of a magnetic field. The governing Navier-Stokes equa- 
tions and energy equation reduce to a set of  nonlinear ordinary, differential equations using similarity. 
The resulting set of  ordinam, differential equations has been solved numerically using a shooting 
method and is represented graphically. For Reynolds number, Re, up to 500 and buoyancy parameter, 
B = ~AT, of the range IBI < 0.05, the f low and heat transfer characteristics with Prandtl numbers 7, 
0.7, 0.1 and 0.01 and magnetic fieM parameters of m = 0.5, 1, and 2 are examined. The heat transfer 
increases with the Prandtl number but decreases with the magnetic parameter. It is established that the 
rotation of  the two disks has a very small effect on the temperature o f  the fluid and the heat-transfer 
process. 

Introduction. Fluid flow and transfer associated with a rotating disk system are of academic and prac- 
tical interest for the wide applications of rotating machinery. Due to the rotation of the disks, two rotational 
forces, Coriolis and centrifugal, are present in the flow field. By considering the fluid density variation and 
invoking the Boussinesq approximation, the so-called centrifugal buoyancy can be taken into account. The 
buoyancy effects on steady transport phenomena in rotating disk systems have been studied by Soong [7-9]. 

The present study extends the work of Soong [7] to magnetic field effects on nonisothermal flow and 
heat transfer between horizontal infinite rotating coaxial disks by using a similarity model for rotation mixed 
convection and the magnetic field. The flow of an electrically conducting incompressible fluid in the presence 
of a magnetic field has been analyzed by E1-Shekh et al. [3], Hamza [4], and Kumari et al. [5, 6] for flow 
between parallel disks. 

The governing Navier-Stokes equations and the energy equation with a rotating frame of reference are 
formulated, and the Boussinesq approximation is invoked to explore centrifugal buoyancy effects. 

Co-rotating disks (f~2 = f21) and a rotating system (~1 # f~2 = 0) are considered to investigate the free 
and mixed convection flows, respectively, in the presence of a magnetic field. A transformation which reduces 
the Navier-Stokes equations and energy equation to a set of nonlinear ordinary differential equations was de- 
scribed by Soong [7] and Ibrahim [2]. The resulting set of nonlinear ordinary differential equations has been 
solved numerically using a shooting method. 

2. Problem Statement and Formulation. Consider the axisymmetric steady flow of a viscous incom- 
pressible fluid contained between two horizontal parallel infinite disks and separated by a spacing S. The disks 
lie at constant temperatures T1 and T2, and rotate with rotational speeds f~l and ~2, respectively, as shown in 
Fig. I. Cylindrical coordinates (R, t~, z) are fixed on the lower disk and their origin lies at the disk center. With 
respect to the rotating frame of reference, Coriolis and centrifugal forces appear explicitly in the momentum 
equation. The fluid flow is assumed to be steady, laminar, axisymmetric and of constant properties, and the 
Boussinesq approximation is invoked for study of the centrifugal buoyancy effects. 
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Fig. I. Physical model of two co-axially rotating infinite disks. 

A magnetic field of strength M is applied normal to the disk surface, and it is assumed that the mag- 
netic Reynolds number is small. Hence the induced magnetic field can be neglected as compared to the applied 

magnetic field. 
The velocity components in the R, • and z directions are u, v and w, respectively. Considering the 

laminar density temperature relation p = pr[l - ~ ( T - T r ) ] ,  the governing equations can be depicted as: 
Navier-Stokes equations 

2 
/)u v 
OR R 

Ou 
- - - - - + w - - - 2 ~  l [1 - ~ ( T -  Tr) ] v + f ~  1R~ ( T -  Tr) = bz 

- - - - - - + V  
Pr0R [ R ~  - -  _--w - 

U , (1) 

0~ Uk' 0V 
w _-- + 2f~ 1 [ 1 - [3 ( T -  Tr)]U = 

Oz 

1 0 (R0v)  02,, v] v v, (2) 

continuity equation, 

-~(Ru) + R ~ (w) = 0 ,  (3) 
,2 

energy equation, 

(v- V) T = otVZT. (4) 

Here, P' = P -  Pr is the pressure departure from the reference condition. Equations (1)-(4) governing the axi- 
symmetric steady flow without a magnetic field (F ¢ 0) are the same as those studied by Soong [7]. By using 

the dimensionless variables and parameters 

u (R, z) = 
- Rf~ . '  (q) 

2 R~e  , v (R, z) = R ~  l G (rl), w (R, z) = "~v-~l H (q) 

7." ~'~1 S-  
T -  T r = 0 (1]) VT, r I =-~ ,  Re = v 

(5) 

where P, v, and ~ are, respectively, density, kinematic viscosity, and electrical conductivity, AT = T 2 -  T1 is 
the characteristic temperature difference, and q is the similarity variable, Eqs. (1)-(4) can be recast into the 

following dimensionless form: 
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Fig. 2. Distribution of axial f low velocity (a), radiation flow velocity (b), 

tangential flow velocity (c), and temperature (d): Re  = 50, B -- 0.05, M = 
1, Pr = 0.01, 0.1, 0.7, 7; ], = O. 

H"" = R'~e H/-/" + 4Re 3/2 [(1 + G) G'  - B (G'0  + GO')] - 

- BRe 3/2 0' + Re2MH " , (6) 

G" = ~ [HG" - I4 (1 + G) + B/ /O]  + M G ,  (7) 

with 

0" = Pr  ~ H 0 ' ,  (8) 

~Fa (9) 
M - - -  

pe-QiRe 

where G, H, and 0 are the tangential and axial velocities and the temperature function, respect ively.  The pa- 
rameter  Pr is the Prandtl number, and Pr = 0.7 for air is used in the present study. The  rotational effect is 
characterized by the Reynolds number, Re; its range is f rom 50 to 500. 
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Fig. 3. Distribution of axial flow velocity (a) [Re = 50; B = 0; M = 1; Pr 
= 0.01, 0.1, 0.7, 7; ~' = -1],  radiation flow velocity (b) [Re = 50, B = 0, 
M = 1, Pr = 0.01, 0.1, 0.7, 7; y = -1] ,  tangential flow velcoity (c) [Re = 
500; B = 0.05; M = 0.5; Pr = 0.01; ~/= -1] ,  and temperature (d) [Re = 
500; B = 0.05; M = 0, 0.5; Pr = 0.01; ~, = -1] .  

The boundary conditions for the velocity and temperature functions are 

H ( 0 ) = H ' ( 0 )  = H ( I ) = H '  ( 1 ) = 0 1  

G ( 0 ) = G ( I ) - q t = 0  I '  (10) 

0 ( 0 ) = 0 ( 1 ) -  1 = 0  

where the parameter 0 - - -  f22 - O t  denotes the dimensionless rotation rate of the upper disk. 

3. Governing Parameters ,  Five parameters are involved in the problem; they are Pr, Re, B, 0 and R. 

V 
The Prandtl number indicates the relative importance of the viscous-to-thermal diffusion effect, Pr = --. The 

f~lS 2 
rotational Reynolds number Re - (S is the spacing between the two coaxial disks) represents the ratio 

v 

between the angular velocity of the lower disk and the kinematic viscosity of the fluid. When Re increases, this 
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Fig. 4. Distribution of axial flow velocity (a), radial flow velocity (b), tan- 
gential flow velocity (c), and temperature (d): Re = 50, 300, 500, B = 
0.05, M = 0, 0.5; Pr = 0.01; 7 = -1.  

means that either the angular velocity of the lower disk increases or the kinematic viscosity of the fluid de- 

creases. The thermal Rossby number B measures the buoyancy effect. The parameter 0 denotes the relative 

rotation rate of  the upper disk with respect to that of  the lower disk. For example, the values of ]( = 0 and 7 

= -1  correspond to the cases of co-rotating disks (~l  = ~2) and rotor-stator (f~t ~ ~'~2 = 0 ) ,  respectively. Note 

that, in this two-disk flow configuration the cases of y = 0 and B ,  0 are pure free convection (B = I](T2 - Tl)), 

while forced convection is characterized by ] ' 4  0 and B = 0. For a nonzero B as well as y, the problem be- 

comes a mixed convection one, in which Re can be used to characterize the forced flow effect. In the conven- 

tional free-convection study, for the validity of  the Boussinesq approximation, ~AT was usually small, for 

example, less than 0.05 in the study of Soong [7]. 
A positive value of B implies T1 < T2, the temperature of the fluid adjacent to the lower disk is higher 

than T1 and the flow is designated as a buoyancy-opposed flow. Conversely, the flow with B < 0 (or 7"1 > T2) 
is a buoyancy-assisted one. The magnetic number M characterizes the magnetic effect. 

4. Numer i ca l  Procedure.  To solve the coupled point boundary value problem expressed by Eqs. (6)- 
(8) subject to the boundary conditions (10) for all values of q, which is the similarity variable, we apply the 
fourth-order Runge-Kut ta  integration scheme with the Nachtsheim-Swigert shooting technique [1]. 

These equations can be expressed as 

1086 



- 0 . 0 0  

-0 .10  

H 
- 0 . 2 0  

- 0 . 3 0  

H 

- - 0 . 4 0  
0.0 

a 

1.o "t 

1 . 0 0  b 

0.00 

- 1 . 0 0  

0 . 1 0  2.00 

- 2 . 0 0  . . . . . . . . . . . . . . . . . .  ' . . . . . .  , 
O0 '1. 1.0 

0 . 4 0  

-0 .00  ¢ 

- O . B O ,  

- 1 . 2 0  . . . . . . . . . . . . . . . . . . . . . . . .  
o.o "t. l .o 

G - 0 . 4 0  

1 . 2 0  

d 

0 0  

I S  0 . 4 0  s 4 ' -  

0 . 0 0  , , , , , . . . .  , , ,  • , • • • , ' ,  , , o , • ! 

o.o ~ Lo 

Fig. 5. Distribution of axial flow velocity (a), radial flow velocity (b), tan- 
gential flow velocity (c), and temperature (d): Re = 50, B = 0.05, M = 1, 
Pr = 0.01, 0.1, 0.7, 7; 7 = -1. 

d y  i 
- f i ( r l ,  yl, y2 ..... y,,), i =  1,2 ..... N .  (11) 

dn 

A typical shooting method can be started with the guessed missing conditions: 

H"=a, / - / " ( 0 ) = b ,  G ' ( 0 ) = c  and 0 " ( 0 ) = d .  (12) 

In an iterative procedure, the values of a, b, c, and d are updated continuously using Newton's method until 
the boundary conditions at rl = 1, i.e., 

H ( I ) = H ' ( I ) = G ( I ) - y = 0  ( 1 ) -  1 = 0  (13) 

are met. The iteration is regarded as convergent if the stopping criterion 

max (Aa, Ab, Ac, Ad) _< 10 -6 (14) 

is satisfied. 
Low Re and M solutions are easily obtained using conventional shooting techniques. However, due to 

the stiffness of the system, the convergent solution is difficult. 
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Fig. 6. Distribution of axial flow velocity (a), radial flow velocity (b), tan- 
gential flow velocity (c), and temperature (d): Re = 50, B = -0.05, M = 
1, Pr = 0.01, 0.1, 0.7, 7; y = -1.  

5. Results and Discussion. Rotation-induced buoyancy effects were studied by Soong [3], while in the 
present work the emphasis is placed on rotation-induced buoyancy effects in presence of a magnetic field. Fig- 
ure 2 shows the free-convection solutions for-Re = 50, M = 1, ~, = 0 and B = 0.05, (T2 > TD. For higher Pr, 
e.g., Pr = 7, the temperature distribution deviations from the conductive solutions are due to the convection 
effect. For an increasing temperature gradient near the lower disk, the cooler fluid is accelerated radically out- 
ward. This enhances the peak value of the radial velocity, which, in turn, alters the axial velocity distribution 
H and through the action of the Coriolis buoyancy effect the circumferential velocity G presents a noticeable 

change. 
Forced convection (buoyancy free) solutions for a rotor-stator system (T = -1)  with Re = 50, M = 1, B 

= 0 (T] = T2) and variable Prandtl number are presented in Fig. 3. Since the velocity-temperature coupling has 
been broken by ignoring the buoyancy effect, the velocity profiles become independent of the Prandtl number, 
while the temperature solutions are still a strong function of  Pr. For relatively high Prandtl numbers, e.g., Pr = 
0.7 and 7 in Fig. 3, a thermal buoyancy layer emerges on the lower disk. The appearance of the thermal buoy- 
ancy layer is attributed to the relatively strong convection effect. 

Figures 5 and 6 show the buoyancy-influenced counterparts of the case in Fig. 3. In Fig. 5 with B = 
0.05 (T2 > T0 and the Prandtl number Pr = 7, the temperature function changes abruptly in the thin thermal 
boundary layer but remains uniform in a large portion of the wheel space. As Pr decreases from 7 to 0.01, the 
thermal diffusion becomes more and more important, and then the temperature variation appears notably in the 

1088 



0.20 2.00 

11 

_ o , o  

,, U-O.~  / 
t4-0 

0.0 ~. 1.0 

H - 0 . 2 0  H. 

l .oo  b 

0 . 0 0  

- l .O0  ~ / / x ~ / $  j 

-2 .00  \ J 

-3 .00  
. . . .  ' ' ' ' " "  ' • ' • ' . . . . . . .  • , v 

0.0 '7. 1.0 

0 .40 

-0.00 

G - 0 . 4 0  

-0.80 " 

C 

- 1 . 2 0  . . . . . . . . . . . . . . . . . . . . . . . .  , 
0.0 ~ 1.0 

1.20 

0 . 4 0  

0.00 . . . . . . . . . . . . . . . . . . . . . . . .  , 
0.0 I 0 

' l  

Fig. 7. Distribution of axial flow velocity (a), radial flow velocity (b), tan- 
gential flow velocity (c), and temperature (d): Re = 50, B = 0.05, M = 0, 
0.5, 1, 1.5, Pr = 0.01; y = -1 .  

whole domain rather than confined in a narrow region of the thermal boundary layer. For small Pr, the tem- 
perature gradient near the lower disk, i.e., z = 0, is alleviated. Therefore, the reduction in the buoyancy-oppos- 
ing effect enhances the radial velocity peak near the lower disk. The axial velocity distribution is modified 
with variation of the radial velocity. Due to coupling of the Coriolis-induced buoyancy in circumferential fluid 
motion and the Prandtl number effects, a salient Pr-dependence of the circumferential velocity is present. In the 
case of buoyancy-assisted flow with B = --0.05 (T2< T]) the velocity field is only slightly altered by the 
change in Prandtl number (Fig. 6), although the temperature distribution varies as in buoyancy-free and buoy- 
ancy-opposed flows. 

Figures 4, 7, and 8 show that the velocity components decrease with an increase in the magnetic field 
while temperature distribution is independent of  the magnetic field. Figure 4 shows that the temperature distri- 
bution is independent of the Reynolds number, Re, while the velocity profiles are strange functions of Re; an 
increase in Re gives an increase in the magnitude of the velocity components. 

It is established that the rotation of the two disks has a very small effect on the fluid temperature and 
the heat-transfer process. The effect of  the Prandtl number in the presence of a magnetic field on the velocity 
components and temperature distribution is small compared with that without a magnetic field. 

The results are found to be in very good agreement, especially when M = 0, with those of Soong [7]. 
When Re increases, this means that either the angular velocity of  the lower disk increases or the kinematic 
viscosity of the fluid decreases. 
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Fig. 8. Distribution of axial flow velocity (a), radial flow velocity (b), tan- 

gential flow velocity (c), and temperature (d): Re = 50, B = 0.05, M = 0, 
1, 2, Pr = 0.01; T = 0. 

6. Concluding R e m a r k s .  The Prandtl number effects on buoyancy-influenced nonisothermal flow be- 
tween coaxial disks have been studied by using a similarity model. The results reveal that a change in Pr leads 
to a variation of the temperature distribution, which, in turn, modifies the velocity field by rotation-induced 
buoyancy effects. From the present theoretical analysis, it can be disclosed that for two-disk problems the 
Prandtl number has a significant impact on the flow and heat-transfer characteristics in either free convection 
or mixed convection. In the t~cpical cases of mixed-convection flow and heat transfer with the same measure of 

buoyancy, IB[ -- 0 .05 ,  the Pr effect of buoyancy-opposed flow (B = 0.05 (T2 > T0) is more pronounced than 
that in buoyancy-assisted ones (B = -0.05 (T2 < TD). The heat transfer increases with the Prandtl number but 
decreases with the magnetic parameter. It is established that the rotation of the two disks has a very small 
effect on the temperature of  the fluid and the heat-transfer process. 

N O T A T I O N  

Tl, temperature of  lower disk; T2, temperature of upper disk; ~ l ,  rotational speed of lower disk; ~2, 

rotational speed of upper disk; (R, ~), z), cylindrical coordinates; (u, v, w), velocity components; M, strength of 

magnetic field; p, density of  fluid; v, kinematic viscosity; cr, electrical conductivity; 11, similarity variable; (G, 
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H), tangential and axial velocities; 0, temperature function; Pr, Prandtl number, Pr = v;  Re, Reynolds number, a 

f21S 2 
Re - , S, spacing between two coaxial disks; B, thermal Rossby number, which measures the buoyancy 

v 

f~2 - f~t 
effect, B = ~(T2 - TD; % dimensionless rotation velocity of upper disk, ~/= -------7 
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